Summarizing rating objects Summary for object of class rating

# S3 method for class 'rating'
summary(object, ...)

Arguments

object

of class rating

...

optional arguments

Value

List with following elements:

  • formula modeled formula.

  • method type of algorithm used.

  • Overall Accuracy named vector containing players ratings.

  • r a data.frame with summarized players ratings and model winning probabilities.

Probabilities are returned only in models with one variable (ratings):

  • name of a player

  • r players ratings

  • rd players ratings deviation

  • Model probability mean predicted probability of winning the challenge by the player.

  • True probability mean observed probability of winning the challenge by the player.

  • Accuracy Accuracy of prediction.

  • pairings number of pairwise occurrences.

Examples

model <- glicko_run(
  formula = rank | id ~ player(rider),
  data = gpheats[1:102, ]
)
summary(model)
#> $formula
#> rank | id ~ player(rider)
#> <environment: 0x55f7a6d3b228>
#> 
#> $method
#> [1] "glicko"
#> 
#> $`Overall Accuracy`
#> [1] 0.6066667
#> 
#> $`Number of pairs`
#> [1] 300
#> 
#> $r
#> Key: <rider>
#>                 rider        r      rd Model probability True probability
#>                <char>    <num>   <num>             <num>            <num>
#>  1:        Andy Smith 1380.985 106.955             0.422            0.389
#>  2:      Billy Hamill 1615.410 135.708             0.520            0.636
#>  3:       Chris Louis 1698.935 102.913             0.669            0.700
#>  4:       Craig Boyce 1518.764  99.693             0.457            0.500
#>  5:     Dariusz Śledź 1459.486 110.219             0.407            0.467
#>  6:     Gary Havelock 1436.409  95.033             0.468            0.429
#>  7:      Greg Hancock 1431.845 104.982             0.594            0.444
#>  8:      Hans Nielsen 1940.670 112.337             0.691            0.882
#>  9: Henrik Gustafsson 1470.559  99.201             0.501            0.444
#> 10:    Jan Staechmann 1287.756 111.101             0.282            0.278
#> 11:        Mark Loram 1621.466 103.416             0.692            0.619
#> 12:        Marvyn Cox 1281.862 100.506             0.323            0.250
#> 13:   Mikael Karlsson 1108.342 112.249             0.247            0.143
#> 14:    Peter Karlsson 1442.468 199.270             0.426            0.333
#> 15:     Sam Ermolenko 1698.492 105.125             0.642            0.667
#> 16:     Tomasz Gollob 1847.471 106.610             0.550            0.765
#> 17:     Tommy Knudsen 1109.247 173.454             0.595            0.167
#> 18:  Tony Rickardsson 1690.942 103.188             0.545            0.667
#>     Accuracy pairings
#>        <num>    <int>
#>  1:    0.556       18
#>  2:    0.455       11
#>  3:    0.550       20
#>  4:    0.450       20
#>  5:    0.667       15
#>  6:    0.619       21
#>  7:    0.333       18
#>  8:    0.706       17
#>  9:    0.722       18
#> 10:    0.778       18
#> 11:    0.571       21
#> 12:    0.750       20
#> 13:    0.810       21
#> 14:    0.333        3
#> 15:    0.500       18
#> 16:    0.706       17
#> 17:    0.333        6
#> 18:    0.611       18
#>